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Recently, S. Van der Meer suggested that the quality of beam 

extraction could be improved by use of a procedure which he 

describes as "stochastic extraction".l Stochastic extraction, as 

he describes it, is a modification of resonant extraction in 

which particles are moved to the extraction resonance by random 

kicks from a noisy RF system. In this note we discuss the 

equations describing stochastic extraction, and describe a program 

which numerically integrates these equations. This program is 

applied to Fermilab main ring parameters, and will be used to 

interpret the results of experimental tests of stochastic extraction. 

I. The Van der Meer Equations 

The concept of stochastic extraction is schematically illus- 

trated in Figure 1. There is an initial distribution of particles 
dN in tune $ = -, dQ which is produced in acceleration. We assume that 

the tune deviation of an individual particle is found from its 

momentum deviation by its chromaticity, 5 Q. 

AQ -= 5 AP 
QO P, 

(1) 

where Q,, p, are the central tune and momentum of the initial 

particle distribution. We also assume that tune is a function 

only of the momentum. 

A flat noise spectrum with idealized square end& at upper 
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and lower frequencies corresponding to the tunes Q2, Q1 is used 

to change the momenta (and tunes) o'f particles in the distribution. 

This noise spectrum spreads across a resonant frequency, a harmonic 
h of the revolution frequency, given by f. = F, where f. is the RF 

resonant frequency, h is the harmonic number, and T is the revolu- 

tion period. 

The bandwidth W of the noise spectrum is given by 

w = 
h l 

where f is the revolution frequency. This can be rewritten as 

.  

The RF noise is determined by its frequency F, h bandwidth 

W, and its rms voltage V,: 

The effect of the noise voltage is to increase the energy 

spread of the beam, and thus the momentum and tune spread, accord- 

ing to the formula: 
2 

diAE>2 = 'AE.k) = e2 V2 n 1 
dt tk T WF 

AEk is the mean energy change per kick, tk is the time between 

kicks, and Vn is the rms voltage kick given to a particle on each 

turn. The factor (l/WT) appears since the noise spectrum covers 

only one harmonic of the revolution frequency and kicks within 

the time period (l/W) are correlated so that the appropriate volt- 

age per kick in AEk is (Vn/WT) and the mean time period between 

kicks is l/W. 

The particle distribution function $ should obey the 

following diffusion equation: 

(2) 

(3) 

(4) 
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(5) 

where t = 

x= 

9 = 

and D = 

time 

Q-Qlr x0 = Q,-Q1 

dN dN -= dx dQ' the particle density, 

1di(x-xo)2> is the diffusion coefficient. 
z dt 

The diffusion coefficient can be found from aquation (4) 

and the direct relationship between 6E and x ('equation 1) and is 

given by the equation: 

D = C2Q2 d<(6E)2> 
2B2 p2 dt 

The diffusion equation (5) can be integrated numerically 

and results of numerical integration will be discussed in Sec- 

tion III. In Section II, we first discuss some features of the 

solutions of equation 5 which can be developed analytically. 

II. Feature%of +&e.Diffusion,Equation 

We first assume that the diffusion coefficient D is constant 

in time and also constant in x between the tunes x = x1 and x = x 2' 
with D = 0 for x < x1 and x > x2 (a step function dependence). As 

noted in reference 1, equation 5 can then be solved in terms of 

Fourier components, imposing appropriate boundary conditions. 

The boundary conditions are: 

1. g= 0 at x = x1 g 0 (Q = Q,). This says that the 

flux of particles (4 = -D g) through the lower limit of the 

noise bandwidth (Q =*a,) is zero. Particle motion is confined 

within the limits Ql<Q<Q2. 

2. *=Oatx=:x R (Q = Q,) l This means that particles 

(6) 
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are removed from the distribution ("extracted") whenever their 

tunes reach the extraction resonant tunes. We assume that 

particles do not cross the resonance without being extracted. 

The solution of equation 5 under these assumptions is: 
2 

~(x,t) = c An cos q e 

()-() 

q Dt 
. 

n=1,3,5,*** 

The coefficients An are found from the initial distribution by 

Fourier decomposition: 

$(x,0) 

Because the decay rate of higher order harmonics is greater 

(decay c1 n2), after some time only the lowest harmonic remains 

(n = 1) and -we find: 
aI2 -- Dt 

4x2 
4J 

Both the distribution function $ and the extraction flux: 

a$ tx,) 
&tx,) = -D ax 

(7) 

(8) 

decay exponentially with time. 

The evolution of a typical distribution with time is 

displayed graphically in Figures (*:A-D). An initially gaussian 

distribution (Figure 2A) is stochastically "heated" following 

the diffusion equation and spreads across the bandwidth (Figure 2B). 

If extraction did not occur, the particles would spread over the 

bandwidth, forming a square distribution (This heating method is 

used at CERN to generate proton beams with large momentum spread 

for cooling experiments. *I. Extraction at x = xR makes the 
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distribution asymmetric (Figure 2C), eventually forming a 

cosine distribution with a maximum at x = 0 and a zero at x = xR 

(Figure 2D). 

This process can be separated into three stages: (1) an 

initial heating stage, in which the beam spreads over the bandwidth, 

(2) an intermediate stage in which extraction begins and reaches a 

maximum rate as higher harmonics are removed from the beam, and 

(3) a final stage in which the distribution is cosine shaped and 

the extraction rate decreases exponentially. In Figure 3 we show 

extraction rate as a function of time for a typical case with 

constant diffusion, calculated using VNDRMR. 

It is more desirable to obtain a constant extraction rate 

and this can be obtained if D is varied with time, as discussed 

in reference 1. If D(t) is not constant equation (6) is no longer 

an exact solution, and numerical integration is necessary (see 

section III). 

However, 

the distribution 

some qualitative features remain. For large t, 

still forms a cosine shape: 

JIltI QmaxW cos g . 

The extraction rate is 

9 = -D +$ (x,) Z D(t); +(t) 
R 

and the total number of particles remaining is: 

2xR $dx z -+- $max(t)o 

(x0:) 

(1%) 

(12 ) 
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If extraction proceeds at a constant rate 9, for a 

total time ts, from t = 0, we must have: 

N(t) = (t,-t)lp,. (12) 

Combining (lo), (11) and (12), we obtain: 

as t+t 
S 

so that D must increase as l/t-ts. D is increased by increasing 

the rms voltage vn(DaVn *) and for any RF source there is a maximum 

obtainable voltage Vmax. We must, therefore, reach a maximum 

value of D before t = t, at a time tmax, given by: 

Dmax = $ (<;px) 2 2 (2) 2 ts-:max l 

At t = tmax a fraction P of the initial cosine distribution remains, 

with F! given by: 

( 1 2xR 
2 

F!r 7 1 
ts Dmax ' 

It is desirable that F be small (for more complete stochastic 

extraction). 

III. Numerical Integration of the Diffusion Equation 

A program named VNDRMR has been written to integrate equation (5) 

numerically and this program is described in this section. 

In VNDRMR, an array X of evenly spaced points is used to deter- 

mine a coordinate system in x, with -X(l) = x0 a lower bound, 

which is chosen smaller than xl, and X(n+l) = X(n) + Ax, where Ax 

is some sufficiently small increment, and X(nmax) = X(N) is some 
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upper bound greater than xR or x2. In the program the function 

q(x) is represented as an array SI(N) with the same dimension as 

X, and this array is calculated as a function of time. 

An initial distribution function Q(x), which, for instance, 

may be a gaussian with width xw, is used to generate an initial 

array SI(N), which is then changed in time following equation 5 

‘$(x,t+At) = d.Jh,t) + g (s,t) At 

with a*(w) = a 
at ax ( D(Xtt) 2 (x,t). > 

In VNDRMR, the derivatives are evaluated using'the second order 

formula: 

af i -=- 
ax 26x C 

f(x+bx)-f(x-bx) , 
) 

The interval At must be chosen such that 

D max(t : (AxI2 

or the integration diverges. 

For extraction, we require $(x,) = 0, that is 9 = 0 at resonant 

tune. After each integration step, $(xR) is set to zero. This 

removes an amount 
-D a$(x,,t) At 

ax from the distribution and 

simulates extraction. In practice the resonant Q(x) = 0 is given 

a finite width about x R, to set a few grid points X(1) within the 

resonance. 

In the above equations, x is dimensionless and only time t 

provides dimensions. Results from one calculation can be scaled 

to obtain results applicable to a number of situations, using 

equations 5 and 6. 
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In Figure 3 we show extraction rate as a function of time for 

D constant. This rate increases rapidly to some maximum value 

9 max and then decreases exponentially. To obtain an acceptably 

steady extraction rate 9, we vary D(x,t) as follows: 

(1) D is initially constant with the value set so that 

$ max(D) = 0,. 
(2) Extraction proceedsuntil+ = +o. From that time 

on D(t) is increased so that the extraction rate 4(t) = 
-D(t) arCl (x,,tl 

ax is constant. 

In Figure 4, we display the results of this extraction procedure 

with the same initial conditions as the case in Figure 3. 

vn(t)(a 6) isalso shown in Figure 4. Vn(t) has a characteristic 

behavior corresponding to the three stages of section II: 

(A) Vn is initially held constant until the desired 

maximum flux 9, is obtained. The next stage is: 

(B) An intermediate stage in which the increase in Vn(t) 

is very close to a linear ramp in time. In this stage the dis- 

tribution loses its higher harmonic content until 

(C) a cosine shape is obtained. In this region we must 

have D 01 l/(t-ts) or Vn 01 l/q. In practice the increase in 

Vn must stop when Vn(t) = Vmax, after which the extraction rate 

decreases exponentially. 

IV. Parameters for Stochastic Extraction 

In this section we exhibit sample parameters for a case 

suggested as a test of stochastic extraction at Fermilab, a case 

with 200 GeV/c momentum and a spill time of 1 sec. These parameters 

may be used during a low energy studies period. The parameters are: 

(1) tune Z = 19.465 (extraction at Q, = 19.5) - Beam can 
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accelerate stably at this tune. 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

velocity B = 1 

tune width of noise AQ = .08 

chromaticity ItI Q = 39 

period T= 21 )ls 

off-momentum factor InI = .00316 

momentum p F 200 GeV/c 

RF harmonic h = 1113 (normal acceleration harmonic) 

spill time ts =.l sec. 

These parameters imply (from equation 3) that the bandwidth 

is W = 340 Hz. This case is calculated in Figure 2,3,4 and we find 

that the desired constant spill rate can be approximately obtained 

by setting 

v,tt = 0 tot = 0.25) = 100 kV 

and then adding a linear ramp so that Vn(t>0.25 set) = 100 + 

267(t-0.25)kV. After t & 1.0 set the extraction rate decreases 

with about 10% of the initial beam remaining. It will be important 

to check these expectations with experiments. 

For practical main ring extraction we must increase the 

momentum to 400 GeV/cand the spill time to -2.5 set although 

we may set the other parameters at the same values shown above. 

For more complete extraction, we would no longer provide a simple 

linear ramp to Vn, but instead let V, vary in the manner shown 

in Figure 4. Vmax could have a value of -2 MV. Scaling from 

the previous case, we would have V(t=O) = 126 kV and find that 

when V(t)+Vmax that 1F = 7x10 -3 of the initial particles would 

remain, to be removed by some other method of extraction. For an 

actual system the parameters would be optimized following experiments 
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such as those suggested above. 

v. More Comments on Stochastic Extraction 

In the discussion above, we have assumed that particle 

motion is dominated by the diffusion equation 5, that extraction 

occurs when a particle crosses the resonant tune, and that an 

ideal RJ? noise source can be applied. with the properties of a 

constant amplitude within a square-edged bandwidth. This picture 

may not be completely accurate. 

This treatment ignores individual particle motions. If the 

particle motionper kick is large, particles may move outside the 

bandwidth limits Ql, Q, or cross the resonance without being 

extracted. We can gain some feeling for the size of individual 

motions by calculation. In one turn a particle tune may change 

which for the second case above (Vn goes from 126 kV to 2 MV) 

gives as a range AQ = 1.23x10 -' to 1.95x1O-4, which is fairly 

small. Since kicks are correlated over the bandwidth W, particle 

tunes will change, over correlated kicks, by 

AQ k/QkVnl 1 = 
cP im 

which, for case 2 above,gives AQ = 1.72x10 -3 to 2.73~10-~ and 

the correlation is over 148 turns. 

This is fairly large, and may give significant individual 

particle motion effects, particularly at the higher voltages. 

Particles may cross the resonance without being extracted. However, 

this may not be harmful since the noise should move them back across 



-ll- TM-961 
0500 

the resonance from the other side. This problem should be studied 

by calculation or experiment. 

A related question is whether individual bunches in extraction 

of bunched beam will heat similarly or whether there will be 

substantial bunch to bunch jitter in extraction. It is not clear 

whether a noise voltage source can be provided which would heat 

each bunch equally. However, the large increase in the longitudinal 

phase space caused by the stochastic "heating" will probably move 

particles out of RF buckets. Stochastic extraction is more suitable 

for unbunched beam. 

In the diffusion equation we have assumed an ideal constant 

amplitude noise source with a perfectly square bandwidth. Small 

deviations from this ideal form will not affect extraction. 

In the case of section VI we have W ; 340 Hz. It is possible 

that this bandwidth is too small to remove undesirable ripple in 

extraction. Substantial experimental tests are necessary to test 

"stochastic extraction". 
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Figure 4. Spill rate j8 and noise voltage TM-961 
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